

A Mn₁₇ Octahedron with a Giant Ground-State Spin: Occurrence in Discrete Form and as Multidimensional Coordination Polymers

Eleni E. Moushi,[†] Theocharis C. Stamatatos,[‡] Wolfgang Wernsdorfer,[§] Vassilios Nastopoulos,[#] George Christou.*,[‡] and Anastasios J. Tasiopoulos^{*,†}

[†]Department of Chemistry, University of Cyprus, 1678 Nicosia, Cyprus, [‡]Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200, [§]Institut Néel, CNRS, BP-166, Grenoble Cedex 9, France, and ^{II} Department of Chemistry, University of Patras, 26500 Patras, Greece

Received September 19, 2008

A $[Mn_{11}^{III}Mn_6^{II}(\mu_4-O)_8(\mu_3-L)_4]^{25+}$ ($L = N_3^-$ or OCN⁻) octahedral unit is reported, occurring within 1D (1)_∞ and 2D (2)_∞ coordination polymers, as well as the corresponding 0D discrete cluster 3. It possesses a giant ground-state spin value, determined in the case of **3** to be S = 37, the second largest to be reported to date. In addition, compound 3 displays single-molecule magnet (SMM) behavior, and is thus the largest-spin SMM.

Paramagnetic transition-metal clusters continue to attract great attention, mainly because of their often unusual and sometimes novel magnetic properties.^{1,2} Such molecules may exhibit high and sometimes abnormally high ground-state spin values, currently up to $S = \frac{83}{2}$.¹ Several such clusters are now known, including the Mn₁₉ family with $S = \frac{^{83}/_2^1}{^{31}/_2^3}$ and $\frac{^{73}}{_2^3}$ and the Mn₂₅ family with $S = \frac{^{51}/_2^4}{^{21}}$ and $\frac{^{61}}{_2,5}$ but it is still very difficult to predict what type of structure will give a large S. There are, however, some strategies that can assist the synthesis of new high-spin molecules, and these include the use of bridging ligands that result in ferromagnetic interactions. The best ligand for this is the N_3^- group when it bridges metal ions in the end-on (1,1) fashion.⁶ We have thus included this group in our systematic investigation of the use of 1,3- propanediol (pdH₂) and its derivatives in manganese carboxylate chemistry.⁷ We herein report three new compounds that all contain the same new Mn_{17} cluster but that differ in their dimensionality: the 1D $[Mn_{17}O_8-$

 $(N_3)_5(O_2CMe)_4(pd)_{10}(py)_6]_{\infty}$ (1)_{\sigma} and 2D [Mn₁₇O₈(OC- $N_7(O_2CMe)_2(pd)_{10}(py)_4]_{\infty}$ (2)_{∞} coordination polymers and the corresponding 0D discrete cluster $[Mn_{17}O_8(N_3)_4(O_2C_{-1})]$ $Me_{2}(pd)_{10}(py)_{10}(MeCN)_{2}(H_{2}O)_{2}(ClO_{4})_{3}$ (3). All three compounds contain the high-symmetry $[Mn_{11}^{II}Mn_6^{II}(\mu_4-O)_{8^-}(\mu_3-L)_4]^{25+}$ [L = N₃⁻ (1 and 3), OCN⁻ (2)] octahedral unit, which possesses a giant ground-state spin that for discrete **3** was determined to be S = 37, the second largest to date. In addition, compound 3 displays single-molecule magnet (SMM) behavior and is thus the largest-spin SMM known to date.

Compound $(1)_{\infty}$ was the first one isolated: it was obtained in 30% yield from the reaction of $[Mn(O_2CMe)_2] \cdot 4H_2O$, pdH_2 , and NaN₃ (1:5:1) in MeCN/py (py = pyridine). Magnetic susceptibility and X-ray crystallographic studies (vide infra) clearly suggested that the Mn_{17} repeating unit of 1 possesses a large ground-state spin S, but its exact value was impossible to determine because of the covalent linkage of neighboring Mn_{17} units, which introduced intermolecular magnetic interactions. The isolation of this Mn₁₇ unit in a discrete form was thus targeted with high priority. Because the Mn_{17} units in $(1)_{\infty}$ were connected by 1,3-bridging N_3^- groups, we explored the analogous reactions with OCN⁻ with the hope that OCN⁻ would still bridge intramolecularly but preclude the μ -1,3 (end-to-end) bridging of neighboring Mn_{17} units and thus avoid the formation of a polymeric species. However, the use of OCN⁻ gave instead the 2D coordination polymer $(2)_{\infty}$ in 32% yield, with properties very similar to those of $(1)_{\infty}$. The second and successful strategy was to include an excess of a poorly coordinating counteranion such as ClO₄⁻ in order to stabilize a positively charged species that might contain neutral terminal ligands instead of the μ -1,3 N₃⁻ groups. Thus, the reaction of $[Mn(O_2CMe)_2] \cdot 4H_2O$ with pdH_2 in the presence of NaN₃ and Mn(ClO₄)₂·6H₂O in a 1:5:1:1 molar ratio in MeCN/py and subsequent diffusion of Et₂O into the yellow solution led to the isolation of 3 in 30% yield after a few days.

The structures of (1)_∞ [Figure S1 in the Supporting Information (SI)],⁸ (2) $_{\infty}$ (Figure S2 in the SI),⁸ and 3^8 (Figure 1,

^{*}To whom correspondence should be addressed. E-mail: atasio@ ucy.ac.cy (A.J.T.), christou@chem.ufl.edu (G.C.).

⁽¹⁾ Ako, A. M.; Hewitt, I. J.; Mereacre, V.; Clérac, R.; Wernsdorfer, W.; Anson, C. E.; Powell, A. K. Angew. Chem., Int. Ed. 2006, 45, 4926.
 (2) Aromi, G.; Brechin, E. K. Struct. Bonding (Berlin) 2006, 1.

⁽³⁾ Ge, C.-H.; Ni, Z.-H.; Liu, C.-M.; Cui, A.-L.; Zhang, D.-Q.; Kou, H.-Z. *Inorg. Chem. Commun.* 2008, 11, 675.
Murugesu, M.; Takahashi, S.; Wilson, A.; Abboud, K. A.;

<sup>Wernsdorfer, W.; Hill, S.; Christou, G. Inorg. Chem. 2008, 47, 9459..
(5) Stamatatos, T. C.; Abboud, K. A.; Wernsdorfer, W.; Christou, G.</sup>

Angew. Chem., Int. Ed. 2007, 46, 884.

⁽⁶⁾ Escuer, A.; Aromi, G. *Eur. J. Inorg. Chem.* 2006, 4721.
(7) (a) Moushi, E. E.; Stamatatos, T. C.; Wernsdorfer, W.; Nastopoulos, V.; Christou, G.; Tasiopoulos, A. J. *Angew. Chem., Int. Ed.* 2006, 45, 7722. (b) Moushi, E. E.; Lampropoulos, C.; Wernsdorfer, W.; Nastopoulos, V.; Christou, G.; Tasiopoulos, A. J. Inorg. Chem. 2007, 46, 3795.

Figure 1. Structure of 3 (top) and its core (bottom). In the lower figure, the yellow line connecting the Mn ions is to emphasize the octahedral topology. Color scheme: Mn^{III}, blue; Mn^{II}, purple; O, red; N, green; C, gray. H atoms have been omitted for clarity.

top) all contain a $[Mn_{17}(\mu_4-O)_8(\mu_3-L)_4(pd)_{10}(O_2CMe)_2]^{3+}$ unit with a flattened octahedral topology. Bond valence sum (BVS) calculations,⁹ charge considerations, and inspection of metric parameters reveal a mixed-valence Mn₁₁^{III}Mn₆^{II} situation. The 17 Mn ions of the core (Figure 1, bottom) are disposed in alternating Mn/Mn₄/Mn₇/Mn₄/Mn layers: the Mn₄ layers are nearly planar rectangles; the central Mn₇ layer is also a rectangle, this time comprising six Mn ions with a seventh at its center, and the remaining two Mn ions occupy the top and bottom capping positions. The Mn_{17} core is held together by eight μ_4 -O²⁻ and four μ_3 -1,1,1-N₃⁻ (or OCN⁻) bridging ligands. The structures also contain 10 pd^{2-} and two carboxylate bridging ligands. For compound 1, the peripheral ligation is completed by six terminal pyridine, two chelating acetate, and one μ -1,3-N₃⁻ ligands. The latter bridges Mn7 of one Mn17 unit to its symmetry-related Mn ion of a neighboring Mn₁₇ unit, resulting in the formation of a 1D coordination polymer (Figure 2, top). The shortest Mn ··· · Mn separation between different Mn₁₇ units is ~ 6.24 A. For compound 2, the peripheral ligation is completed by four terminal pyridine and three μ -1,3-OCN⁻ ligands. The three OCN⁻ groups bridge two Mn ions of the Mn₁₇ unit (Mn7 and Mn9) with Mn ions of two neighboring Mn₁₇ units, resulting in a 2D coordination polymer (Figure 2, bottom). The shortest Mn···Mn separation between different Mn_{17} units is ~6.36 Å. For compound 3, the peripheral ligation is completed by 10 pyridine, 2 water and 2 MeCN ligands, all terminal. A close examination of the packing of 3 reveals the existence of intermole-

Figure 2. Wireframe representations of sections of $(1)_{\scriptscriptstyle\infty}$ (top) and $(2)_{\infty}$ (bottom) emphasizing the connection of Mn_{17} units into 1D and 2D polymeric networks, respectively. The color scheme is as in Figure 1.

Figure 3. $\chi_m T$ vs T plots for $(1)_{\infty}$, $(2)_{\infty}$, and 3. Inset: Plot of reduced magnetization, $M/N\mu_{\rm B}$ vs H/T for **3**. The solid lines are the fit; see the text for the fit parameters.

cular hydrogen-bonding interactions involving terminally bound and lattice H₂O molecules and ClO₄⁻ counterions $(O \cdots O \text{ separations} = 2.7 - 2.9 \text{ Å})$; i.e., there are no hydrogen bonds directly between neighboring Mn₁₇ cations, and as a result, the shortest Mn...Mn separation between different Mn_{17} units is ~8.47 Å, significantly longer than those for $(1)_{\infty}$ and $(2)_{\infty}$.

Solid-state direct current (dc) magnetic susceptibility measurements were performed on vacuum-dried micro-crystalline samples of $(1)_{\infty}$,^{10a} $(2)_{\infty}$,^{10b} and 3^{10c} in a 0.1 T field in the 5-300 K range. The obtained data are shown as $\chi_{\rm m}T$ vs T plots in Figure 3, and they indicate the existence of predominantly ferromagnetic interactions and a resulting giant ground-state spin for the Mn_{17} units. For $(1)_{\infty}$ and (2), $\chi_m T$ increases from 82.5 and 85.9 cm³ mol⁻¹ K at 300 K to maxima of 375.4 and 407.5 $\text{cm}^3 \text{ mol}^{-1}$ K at 40 and 35 K, respectively, before decreasing rapidly to 67.9 and 119.0 $\text{cm}^3 \text{ mol}^{-1}$ K at 5 K. The low-temperature decrease is very probably due to intermolecular antiferromagnetic exchange interactions mediated by the end-toend N_3^- and OCN⁻ ligands, resulting in diamagnetic ground spin states for the two polymeric species. For 3,

⁽⁸⁾ The Crystal data for $(1 \cdot 2H_2O \cdot 2MeCN)_{\infty}$, $(2 \cdot 1H_2O)_{\infty}$ and $3 \cdot 1.2H_2O$

are provided in the Supporting Information. (9) (a) BVS calculations for the Mn^{9b} ions of compounds $(1)_{\infty}$, $(2)_{\infty}$, and 3 gave oxidation state values of 2.83–3.16 (Mn^{111}) and 1.81–2.07 (Mn^{11}). (b) Liu, W.; Thorp, H. H. Inorg. Chem. 1993 32, 4102.

Communication

 $\chi_m T$ increases from 83.9 cm³ mol⁻¹ K at 300 K to a maximum of 597.9 cm³ mol⁻¹ K at 15 K before decreasing to 516.6 cm³ mol⁻¹ K at 5 K. The maximum is consistent with an S = 37 ground state, the maximum possible for a Mn^{III}Mn^{II} system, assuming a g value of slightly less than 2. The low-temperature decrease is due to Zeeman effects, zero-field splitting, and/or weak intermolecular interactions. dc magnetization data were collected in the temperature and magnetic field ranges of 1.8–10 K and 0.1–7 T, respectively. The data were fit by assuming that only the ground state is populated and by including axial zero-field-splitting $(D\hat{S}_z^2)$ and Zeeman interactions. For the two polymeric species (1)_∞ and (2)_∞, the intermolecular interactions of significant strength between neighboring Mn₁₇ molecules precluded a fit of the data to isolated units,^{7b} but for 3, a good fit was obtained with S = 37, g = 1.95, and D = -0.009 cm⁻¹ (Figure 3, inset).

The conclusions from the dc studies were also confirmed by alternating current (ac) susceptibility experiments. The in-phase $\chi_m'T$ (Figure S3 in the SI) for the two polymeric species decreases almost linearly with decreasing temperature and is clearly heading to $\chi_m'T$ values close to zero at 0 K consistent with antiferromagnetic intermolecular interactions and a diamagnetic ground spin state. Extrapolation of the $\chi_m'T$ signal of 3 (Figure S3 in the SI) to 0 K from above 8 K to avoid the effects of intermolecular interactions gave $\chi_m'T \sim 620 \text{ cm}^3 \text{ mol}^{-1}$ K, consistent with $S \sim 37$ and g slightly less than 2.0 ($\chi_m T$ for an S = 37 state with g = 1.88 is 621.2 cm³ mol⁻¹ K), as expected for a Mn^{II}/ Mn^{III} complex. The lowest temperature decrease is likely due to weak intermolecular interactions between neighboring Mn₁₇ units and is also typical of other high-spin molecules. ^{4,5} For all three complexes, there is no ac out-of-phase (χ_m'') signal down to 1.8 K (Figures S4–S6 in the SI).

The S = 37 ground state and negative D value suggested that 3 might be an SMM. Single-crystal magnetic studies on $3 \cdot 1.2 H_2O$ were therefore performed using a micro-SQUID instrument,¹¹ and magnetization (M) vs dc field sweeps are shown in Figure 4. Hysteresis loops are evident below ~0.7 K, with their coercivities increasing with decreasing temperature, as expected for an SMM. An Arrhenius plot constructed from dc magnetization decay data gave $U_{eff} = 9.0 \text{ cm}^{-1} = 13 \text{ K}$ and $\tau_0 = 1.0 \times 10^{-13} \text{ s}$, where τ_0 is the preexponential factor (Figures S7 and S8 in the SI). The small value of τ_0 , smaller than is typical for purely SMM behavior,² is likely due to weak intermolecular interactions and low-lying excited states; large clusters often give smaller τ_0 values.^{4,5} Note that adjacent Mn₁₇ clusters in 3 are hydrogen-bonded in one direction, but not directly, only via the lattice H₂O molecules. Thus, intermolecular exchange interactions will be very weak,

Figure 4. Magnetization (*M*) versus field hysteresis loops for single crystals of $3 \cdot 1.2 H_2 O$ at the indicated temperatures. The magnetization is normalized to its saturation value (M_s).

and they will represent merely perturbations of singlemolecule properties. In addition, they will be antiferromagnetic and thus could not make **3** be a single-chain magnet rather than an SMM.

In summary, the use of N_3^-/OCN^- ligands in Mn-pdH₂ chemistry under various conditions has yielded essentially the same Mn_{17} unit within 0D, 1D, and 2D compounds. The discrete form 3 was targeted once the polymeric form was identified, and it was obtained by a procedure containing some elements of synthetic control that could also prove useful for the isolation in discrete form of the repeating cluster of other coordination polymers. Compound 3 possesses a giant ground-state spin of S = 37 and is the largestspin SMM to date. S = 37 is also the second-highest ground state yet identified,¹ and it is the maximum for a [Mn₁₁^{III}Mn₆^{II}] species, thus indicating that most, if not all, of the interactions are ferromagnetic. This is consistent with the μ_3 -1,1,1-N₃⁻ ligands, which are known to mediate ferromagnetic interactions.⁶ Finally, the labile terminal ligands on the Mn₁₇ units offer a variety of additional possibilities for crystal engineering, i.e., introducing interunit linkages of various types for the construction of multidimensional coordination polymers with interesting magnetic and/or structural properties. Compounds $(1)_{\infty}$ and $(2)_{\infty}$ provide a proof-of-feasibility of this strategy that encourages us to believe an expanded family of related polymeric species containing this high-spin Mn_{17} unit should be possible.

Acknowledgment. This work was supported by the Cyprus Research Promotion Foundation and the National Science Foundation.

Supporting Information Available: Crystallographic details (CIF), structural representations, and magnetism plots. This material is available free of charge via the Internet at http:// pubs.acs.org.

^{(10) (}a) It analyzes as $1\cdot 2H_2O$. (b) It analyzes as $2\cdot 6H_2O$. (c) It analyzes as $3\cdot 4H_2O$.

⁽¹¹⁾ Wernsdorfer, W. Adv. Chem. Phys. 2001, 118, 99.